MINIMIZATION OF SUGAR LOSSES WITH LOUVRE SUGAR ENTRAINMENT ARRESTORS

LSEA II®, LSEA I®, LSEA 110®, POLYBAFFLE

REGISTERED DESIGNS NUMBERS 134177, 134298, 134178

DESIGNED TO SUIT VARIOUS DUTIES IN EVAPORATORS, VACUUM PANS, SUGAR DRYERS

- STANDARD MODULE OR CUSTOM MADE
- VERTICAL, HORIZONTAL OR ANGLED POSITIONING
- ROBUST CONSTRUCTION USING STAINLESS STEEL
- SIMPLE INSTALLATION
- COMPETITIVE PRICES

OTHER TYPES OF ARRESTORS

STANDARD CATTLE CREEK, CHANNEL MAZE

ALSO AVAILABLE FROM ALL METAL SOLUTIONS
NEW LOUVRE ARRESTORS
FOR
DE-ENTRAINMENT OF SUGAR VAPOURS

C. C. van Lint*, P. G. Wright**, G. D. Ingram** and H. Martel*

*ALL METAL SOLUTIONS
**SUGAR RESEARCH INSTITUTE
LSEA Louvres

BACKGROUND

Louvres are used to remove droplets of juice or liquor from vapour produced in evaporators and vacuum pans, and to collect dust from air exiting sugar dryers.

LSEA ITM, LSEA IITM and LSEA 110TM are louvres designed by ALL METAL SOLUTIONS (ROLLPRESS-WRIGHTS). These louvres are modifications of the standard “Cattle Creek” (CCK) louvre design.

In 1997, SRI was commissioned by ALL METAL SOLUTIONS (ROLLPRESS-WRIGHTS) to conduct a test program on LSEA ITM, LSEA IITM, LSEA 110TM and a range of other louvres including POLYBAFFLE louvres, CCK louvres, wave plate eliminators and inverted channel maze separators.

The pressure drop (ΔP) and the limiting face velocity (V_{LF}) were selected as indicators of louvre performance.
PERFORMANCE INDICATORS

PRESSURE DROP
\((\Delta P)\)

\(\Delta P\) occurs in the vapour flow through the louvres.

A velocity square law expression is used for the prediction of \(\Delta P\).

LIMITING FACE VELOCITY
\((V_{LF})\)

\(V_{LF}\) is the face velocity of gas or vapour below which re-entrainment of large droplets will not occur.

\(V_{LF}\) is estimated from the *Souders-Brown* equation.

For good efficiency, the actual gas or vapour velocity should be less than \(V_{LF}\) in order to prevent re-entrainment of the collected liquid.

Generally, a good louvre has a low \(\Delta P\) and a high \(V_{LF}\).
TEST APPARATUS

Consisted of an air blower, water sprays and a duct fitted with a selection of test boxes containing the louvres.

The louvres could be oriented at variable angles, and were tested at the following orientations.

V_{LF} was measured with a *Velocicalc Plus 8360* hot wire anemometer.

ΔP was measured with the differential pressure function of the *Velocicalc* unit.

<table>
<thead>
<tr>
<th>LOUvre</th>
<th>ORIENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYBAFFLES (large)</td>
<td>Horizontal</td>
</tr>
<tr>
<td>CCK</td>
<td>20° tilt</td>
</tr>
<tr>
<td>$LSEA 110^{TM}$</td>
<td>20° tilt</td>
</tr>
<tr>
<td>$LSEA I^{TM}$</td>
<td>20° tilt</td>
</tr>
<tr>
<td>$LSEA II^{TM}$</td>
<td>20° tilt</td>
</tr>
<tr>
<td>Wave plate eliminator</td>
<td>20° tilt</td>
</tr>
<tr>
<td>Inverted channel maze separator (ICMS)</td>
<td>Horizontal 4° tilt</td>
</tr>
</tbody>
</table>
PRESSURE DROP (Pa) AT LIMITING FACE VELOCITY & LOUVRE AREA (m²) REQUIRED PER 100 T/H VAPOUR

FINAL EVAPORATOR CONDITIONS

FIGURE 1
PRESSURE DROP (Pa) AT LIMITING FACE VELOCITY

FINAL EVAPORATOR CONDITIONS

FIGURE 1
LOUVRE AREA (m²) REQUIRED PER 100 T/H VAPOUR

FINAL EVAPORATOR CONDITIONS

FIGURE 2

AREA

© All Metal Solutions 2005
CAPTURE EFFICIENCY OF VERY FINE DROPLETS

QUALITATIVE

HIGH

LOW

POLYBAFFLES
LSEA 110
LSEA II
ICMS (HORIZONTAL)
CCK
LSEA I
WAVE PLATE ELIMINATOR
ICMS (4 DEG TILT)

FIGURE 3
CONCLUSIONS

Figure 1 shows that, in a final evaporator, where an upper limit of ΔP of about 400 Pa is recommended, LSEA ITM has the lowest ΔP value at 100 Pa. POLYBAFFLES and the horizontal inverted channel maze separator follow at 110 Pa, and the ΔP for LSEA IITM is 185 Pa.

Figure 2 shows the louvre area required in final evaporator conditions (at 100 t/h vapour). The louvre area required steadily decreases from the CCK to the LSEA IITM and the latter is about 17% higher than the POLYBAFFLES.

The V_{LF} values of the LSEA ITM, LSEA IITM and LSEA 110TM are about 20-40% higher than the V_{LF} of the CCK but they are about 15-30% lower than the V_{LF} of the POLYBAFFLE.

Figure 3 shows the capture efficiency of very fine droplets. CCK and wave plate eliminators were most efficient in this mode. LSEA 110TM is the next best followed by LSEA IITM which is in turn better than the POLYBAFFLES and LSEA ITM. In final evaporator conditions, the liquor is quite viscous and fine droplets should not be formed.